
IEEE Communications Magazine • July 2003110 0163-6804/03/$17.00 © 2003 IEEE

1 For example,
Amazon.com, in its letter
to shareholders, men-
tioned that it served 25
million customer
accounts in 2001.

COLLABORATIVE RESEARCH IN
TELECOMMUNICATIONS:

A CANADIAN EXPERIENCE

INTRODUCTION

In the last decade, there has been growing inter-
est in implementing electronic commerce appli-
cations on the Internet. A popular class of
applications is the sale of goods and services
using Web technology. For such applications,
users browse product information offered by an
online store. They may subsequently submit a
request to purchase selected items. From the
user’s perspective, factors that could impact the
acceptability of electronic commerce include
security and trust, ease of use, and response time.

This article is concerned with system architec-
tures supporting online stores. Since the early stages
of Web development, it has been recognized that
the server architecture should be scalable. By scal-
able, we mean a system’s capacity can be improved

in a straightforward manner to support more users
without suffering noticeable degradation in response
time performance [1]. Scalability is an important
issue because the user base of online stores is large1

and is expected to increase in the future.
Performance and scalability of Web-based elec-

tronic commerce systems have been investigated
as part of the Canadian Institute for Telecommu-
nications Research (CITR) major project entitled
Enabling Technology for Electronic Commerce
Applications. This major project was developed in
close collaboration with the IBM Centre for
Advanced Studies (CAS) [2]. It represents an
example of a very successful approach to coopera-
tive research between industry and academia. Par-
ticipants included researchers from six universities,
CAS, and the Electronic Commerce Development
Team at the IBM Toronto Laboratory.

For a Web-based electronic commerce sys-
tem, techniques that can be used to improve sys-
tem capacity include mirror sites, caching, one
or more server clusters, and parallel database
systems. The last two techniques are of particu-
lar interest to the CITR major project because
of their immediate relevance to industry prod-
ucts developed at the IBM Toronto Laboratory.

In this article we first describe the basic system
architecture and the types of data that need to be
managed. This is followed by an overview of tech-
niques that can be used to improve system capaci-
ty. We next describe highlights of new research
results in system performance and scalability.
Finally, we provide some concluding remarks.

BASIC SYSTEM ARCHITECTURE
A typical Web-based electronic commerce sys-
tem has a three-tier architecture: the Web serv-
er, electronic commerce application server, and
database system (Fig. 1). The Web server is a
process that handles requests from users and
returns the requested Web pages. The applica-
tion server contains the business logic and
accesses the database for information such as

Gregor v. Bochmann, University of Ottawa; Johnny W. Wong and David Evans, University of Waterloo;

Terence C. Lau and Don Bourne, IBM Canada; Brigitte Kerhervé, Université du Québec à Montréal;

Mohamed-Vall M. Salem and Haiwei Ye, University of Montreal

ABSTRACT

In a Web-based electronic commerce system,
users browse product information offered by an
online store and submit requests to purchase
selected items. From the user’s perspective,
response time is a factor that could impact the
acceptability of electronic commerce. This article
is concerned with system architectures for online
stores. Emphasis is placed on techniques to
improve a system’s capacity to support more users
without suffering a noticeable degradation in
response time performance. Such techniques have
been investigated as part of a Canadian Institute
for Telecommunications Research major project
entitled Enabling Technology for Electronic Com-
merce Applications, developed in close collabora-
tion with the IBM® Centre for Advanced Studies.
The basic architecture of a Web-based electronic
commerce system is first described along with the
types of data that need to be managed. Next, an
overview of existing techniques for improving sys-
tem capacity is presented. Finally, highlights of
research results obtained as part of the CITR
electronic commerce major project are discussed.

Scalability of Web-Based
Electronic Commerce Systems

IEEE Communications Magazine • July 2003 111

catalogs, inventory level, and user information,
such as registration data and shopping cart con-
tent. The three components may reside on the
same machine or on different machines.

Typically, users are engaged in browsing or
purchasing activities. The Web pages the system
delivers to users are constructed by the business
logic at the application server. This involves
retrieving appropriate data items from the
database, performing the required processing,
and formatting the results so that the user may
view them. The system also maintains a shop-
ping cart for each user. During a shopping ses-
sion, the user may add items to (or remove items
from) the shopping cart. When the user is ready
to submit an order, the shopping cart content
will constitute the items to be purchased.

In general, the database for an online store
may contain the following types of data:
• Catalog data — These are semi-static data

that do not change in response to user
requests. Such data are updated infrequent-
ly and only via well defined management
commands.

• User data — These are dynamic data that
describe user-specific information such as
registration data, order history, and shop-
ping cart content. They are created and
updated in response to user requests.

• Inventory level — These data describe
inventory information. They are updated in
response to user requests and inventory
management.
In designing system architectures for elec-

tronic commerce, an important consideration is
how the various types of data are managed.

SCALING TECHNIQUES
In this section we discuss techniques that can be
used to increase the capacity of a Web-based
system to support more users.

MIRROR SITES
A popular method to improve a system’s overall
capacity is to use mirror sites. With this method,
information requested by users is made available
at multiple server sites; each site has its own copy
of the database. This is essentially an extension of
the architecture shown in Fig. 1 where the system
is replicated, with one replica per site. Each repli-
ca has a different URL. Typically, a user selects a
server site from a list of sites that offer the same
service. The selection is often made according to
geographical proximity or the user’s perception of
the load at the various sites. The overall capacity
is increased because each site can process requests
independent of the others. However, consistency
of the databases at the various sites must be main-
tained, and there is no formal method to do this.
This issue, in the context of electronic commerce
applications, will be addressed later in this article
when multiple cluster architecture is discussed.

CACHING
Another popular approach to improve a system’s
overall capacity is caching. Web pages may be
cached at the user’s machine. Subsequent requests
for these pages can be serviced by the copies in the
cache without the need to access the Web server.

System capacity is effectively improved because
fewer requests are submitted to the system. Caching
may also be done at the application server. In this
case, Web pages are stored at the application server
after their construction. If the same page is required
to service two or more user requests, only the first
request will incur costs in executing the business
logic and accessing the database.

Furthermore, Web pages may be cached at
proxy servers that are located between the user
and the Web server [3]. For a given user,
requests are always sent to the proxy with whom
the user is associated. If the requested page is
available at the proxy, the proxy can process the
request directly; otherwise, the request is for-
warded to the Web server. In general, proxies
can be organized hierarchically to further
enhance the scalability of the overall system.

Note that in electronic commerce applica-
tions, caching is most easily applied to browsing
of information pages. Requests to change the
shopping cart content or transactions are usually
sent to the Web server directly.

SERVER CLUSTER
A server cluster consists of a number of server
nodes running on multiple machines. Each server
node processes user requests independent of the
others. As the demand grows, the system capaci-
ty can be increased by deploying more server
nodes. Unlike mirror sites, the server nodes in a
cluster are transparent to users in the sense that
a single public URL is used to access the cluster.
With respect to response time performance, an
important issue is load balancing among the
server nodes. Examples of load balancing tech-
niques are domain name system (DNS)-based
and dispatcher-based load balancing.

When a user accesses a URL, a request is first
sent to a name server, where the host name in the
URL is mapped to an IP address. This is the IP
address to which the request is sent. In the DNS-
based approach, the name server is set up so that
the IP addresses of the various server nodes are
selected according to a load-balancing algorithm.
A common algorithm is round-robin (RR) where
server nodes are selected in cyclic order (i.e.,
node 1, node 2, …, node N repeatedly), where N
is the number of server nodes. This approach was
used in an early version of the National Center
for Supercomputing Applications Web server.

In dispatcher-based load balancing, a dis-
patching entity is placed between the users and
the server cluster. This dispatcher is typically
configured with a public IP address that repre-
sents the cluster. All packets sent to the cluster
are first routed to the dispatcher, which dis-
tributes the packets to the server nodes. The
communication between the dispatcher and serv-
er nodes is hidden from the users. Examples of

� Figure 1. Basic Web server architecture.

Users Web
server

Application
server

Database
system

IEEE Communications Magazine • July 2003112

dispatcher-based load balancing include ONE-IP
developed at Lucent Technologies, IBM eNet-
work Dispatcher, and Cisco LocalDirector.

In ONE-IP, the dispatcher distributes TCP
connections among server nodes. Packets belong-
ing to the same connection are forwarded to the
same node. For a given TCP connection, the
selection of a server node may be based on a
hash of the user address. Alternatively, each serv-
er node may handle requests from a fixed and
disjoint portion of the user address space. IBM
eNetwork Dispatcher uses a TCP connection for-
warding mechanism. It runs on the same LAN as
the server nodes. These nodes and the dispatcher
share the same IP address. The system is config-
ured such that the dispatcher receives all incom-
ing packets sent to that IP address. The
dispatcher processes these packets, selects a serv-
er node for each new connection, and forwards
all packets related to that connection to the
selected server node. Outgoing data are sent
directly from server node to user without any
involvement of the dispatcher. In contrast, Cisco
LocalDirector is set up to intercept all packets
belonging to each TCP connection. It performs
the necessary changes in IP packet headers so
that the mapping between the user and the select-
ed server node remains transparent to both.

PARALLEL DATABASE SYSTEMS
The capacity of an individual server cluster can be
enhanced by using a parallel database system. Typi-
cally, a parallel database system consists of several
database nodes; each is capable of processing queries
independent of the others. The amount of paral-
lelism is affected by how the data are distributed
across the database nodes. For example, if frequently
requested data are replicated at two or more nodes,
system capacity is increased because two or more
queries may be processed simultaneously.

Existing data distribution strategies devel-
oped for parallel database systems usually try to
minimize the traffic between database nodes or
to balance the load among these nodes in terms
of total size of data or disk access frequency [4].
In general, determining the optimal distribution
of data across the nodes of a parallel database is
a difficult problem, and heuristic solutions are
often developed. These solutions generally lead
to improvements in overall system capacity.

RESEARCH RESULTS
In this section we present highlights of research
results obtained as part of the CITR major pro-
ject on electronic commerce.

PERFORMANCE OF
LOAD BALANCING ALGORITHMS

Within a server cluster, poor server node selec-
tion may lead to some nodes being saturated
while other nodes have surplus capacity. Server
node selection to achieve load balancing is there-
fore an important issue [5]. We have investigat-
ed the performance of dispatcher-based load
balancing algorithms. A salient feature of our
system architecture is session-based2 server node
selection in which the dispatcher assigns a user
to a server node for an interval of time called
the assignment period (Fig. 2). This is different
from the above-mentioned approaches where
the dispatcher is involved on a per-TCP connec-
tion basis. In our architecture the dispatcher is
only involved in the initial server node selection,
and the user interacts directly with the selected
node during the assignment period. This would
tend to reduce the dispatcher load. Furthermore,
performance data can be collected at the server
nodes and sent to the dispatcher. These data
may be used for load balancing purposes.

We have evaluated the performance of the
following load balancing algorithms using simu-
lation:
• Weighted RR (WRR) — Server nodes are

selected in cyclic order with some nodes
being selected more frequently than others.
Note that RR is a special case of WRR.

• Least Utilization (LU) — The server node
with the lowest utilization is selected; the
details of this algorithm can be found in [6].
Note that server node performance data
are used in LU, but not in WRR.
The details of our simulation model, includ-

ing the workload parameters, are described in [6].
A performance measure of interest is the response
time percentile T(x) = Prob [response time ≤ x].
The percentile is considered instead of the mean
because it is a better indicator of good user expe-
rience. Our results show that for homogeneous
server nodes (i.e., each node in the cluster has the
same capacity), a simple algorithm such as RR is
effective with respect to load balancing.

For heterogeneous server nodes (i.e., some
nodes are fast while others are slow), the results
for T(x) are shown in Fig. 3. We observe that RR
yields significant imbalance in response time per-
formance among the server nodes. This is because
RR does not distinguish between nodes of differ-
ent capacities, resulting in the fast nodes being
underutilized while the slow ones are overloaded.
Imbalance is not observed when either WRR
(with weights determined according to server node
capacity) or LU is used. Between them, WRR has
the advantage of simplicity, assuming that the
weights can be determined efficiently. It should be
the preferred algorithm unless the available capac-
ities at the various server nodes change frequently.
LU is more capable of adapting to changes in
available capacities, and would be a good alterna-
tive in such dynamic environments.

MULTIPLE CLUSTER ARCHITECTURE
We have designed a highly scalable architecture
for electronic commerce systems using multiple
clusters [7]. Each cluster has multiple server
nodes and a single database. As demand grows,

� Figure 2. Dispatcher-based load balancing.

Server node
selection

Performance
data

Request/response

Users Dispatcher

Server node

Server node

2 In our context, a session
is a time interval during
which the user interacts
directly with a selected
server without the involve-
ment of the dispatcher.

IEEE Communications Magazine • July 2003 113

system capacity can be increased by deploying
more clusters. In addition to load sharing among
the clusters, users can be redirected to another
cluster in case of failure or scheduled mainte-
nance, thus improving the availability of the
overall system.

A salient feature of our architecture is the
specific way that different types of data are man-
aged. Since each cluster has its own database,
any updates to the catalogs must be made to all
the databases. Also, if a user currently interact-
ing with cluster 1 were to be redirected to clus-
ter 2, the shopping cart content for this user
must be available at cluster 2 before the user can
view the existing items or add more items. Con-
sistency of the databases at the various clusters
needs to be maintained. This incurs overhead,
and some of the data may temporarily be out of
date. This is the price to pay for increased scala-
bility and enhanced availability.

Our architecture is depicted in Fig. 4. For ease
of exposition, only two clusters are shown: primary
and secondary. In general, there may be more than
two clusters in the system. For reliability reasons,
several clusters may assume the role of the prima-
ry cluster; this allows a new primary to be chosen
in case the current primary fails. The system main-
tains, for each user, a set of clusters to which the
user may be assigned (referred to as the user’s
cluster set). Clusters in this set may be determined
by a combination of factors such as user/cluster
affinity, cluster availability, and global load balanc-
ing considerations. When a user logs on to the sys-
tem, the load balancer assigns the user to a cluster
within his/her cluster set. This cluster is referred to
as the user’s home cluster. The user will then inter-
act with this cluster. If the user is inactive for an
extended period time (e.g., an hour), he/she may
be migrated to another cluster within the cluster
set (this becomes the user’s new home cluster).
Such an action is usually taken to achieve global
load balancing. Also, when a cluster fails or is
taken out of service to perform hardware or soft-
ware maintenance, all users interacting with that
cluster are redirected to new home clusters select-
ed from their respective cluster sets.

We next describe how the different types of data
are managed. The primary cluster is the central
repository of the catalogs. Any updates to catalogs
are made at this cluster and then pushed to the sec-
ondary clusters. The primary is also responsible for
inventory management. Specifically, a portion of
the available inventory is assigned to each cluster.
The assignment may be based on the expected
demands at the various clusters. When the available
inventory has dropped below a given threshold, or
if there is insufficient inventory at a cluster to pro-
cess an order, the primary cluster may be contacted
to request reallocation of inventory.

Dynamic data such as shopping cart content
are created and updated at the user’s home clus-
ter. Periodically, this home cluster transmits
updated information to the primary cluster,
which then distributes it to the other clusters in
the user’s cluster set. The shopping cart content
will then be available if a user is redirected to
another cluster. Finally, when a user places an
order, the shopping cart content is converted
into a transaction that is forwarded to the prima-
ry cluster for processing.

Our system architecture has been tested with
IBM WebSphere Commerce and IBM DB2.
Our implementation, together with measure-
ment results, has confirmed the feasibility of our
multiple cluster design.

STALENESS/RESOURCE
CONSUMPTION TRADE-OFF

In our multiple cluster architecture, a data item
at the secondary cluster becomes stale (or out-
dated) when the same data item is updated at
the primary. Staleness can be eliminated if the
primary cluster notifies the secondary cluster
immediately upon completion of each update.
This technique can be resource-intensive if the
data are updated frequently. In some cases,
staleness is unavoidable because the updates
may occur at a rate faster than the primary can
transmit them, or the primary may not wish to
expend the processing and communication
resources required to transmit all updates. There
is therefore a trade-off between resource con-
sumption and staleness. We are the first to char-
acterize this trade-off using analytic modeling.

� Figure 3. Response time performance for heterogeneous server nodes.

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

1.00

0.80

0.60

0.40

0.20

Response time (s)

0.00

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0&
+

Fast server node (RR)
Slow server node (RR)
Fast server node (WRR/LU)
Slow server node (WRR/LU)

� Figure 4. Multiple cluster architecture.

Users
Request

Request

Request

Response

Response

Catalog
updates

Shopping
cart

updates

Load
balancer

Primary
cluster

Secondary
cluster

IEEE Communications Magazine • July 2003114

In our investigation, a measure of staleness
was defined [8]. Suppose a given data item is
updated at the primary cluster at time t1. Stale-
ness is not incurred if this update is transmitted
immediately to the secondary cluster. On the
other hand, if the update is transmitted some
time later, say at t2, the data item is considered
to be stale from t1 to t2. The staleness of a data
item is defined to be the fraction of time the
data item is stale. Our definition of staleness is
different from others [9] in the sense that the
primary cluster is viewed as being responsible
for keeping the data item current. Any staleness
is caused by the primary cluster not being able
to transmit updates promptly.

We also defined a transmission attempt at the
primary. Specifically, a transmission attempt for
a given data item involves the following activity.
The status of the data item is checked; if an
update has been made since the last attempt, the
update is transmitted to the secondary. Our ana-
lytic result shows that over the long term, mak-
ing transmission attempts periodically is optimal
as far as minimizing staleness is concerned [8].
Minimum staleness is given by

(1)

where u is the update rate and n is the rate at
which transmission attempts are made. Analytic
results were also obtained for R, the rate at
which processing resources are consumed in
order to transmit page updates [8]. It was found
that R is related to the minimum staleness S by

R/u + S = 1. (2)

The trade-off between staleness and resource
consumption is shown in Fig. 5. In this figure,
n/u and R/u are rates relative to the update rate.
We observe that when n/u is small, an increase
in n results in a significant improvement in stale-
ness, but at the expense of a considerable

increase in R. The amount of improvement (and
the corresponding increase in R) is a decreasing
function of n.

PARALLEL DATABASE SYSTEMS

In our CITR major project, the issue of data dis-
tribution in a parallel database system has been
investigated. We distinguish between data that
may be replicated at two or more database nodes
and data that are stored at one database node
only. In electronic commerce applications, cata-
log data are frequently requested, whereas their
update rate is low. They are natural candidates
for replication because the same data will likely
be required by two or more users simultaneous-
ly, and queries involving such data may be pro-
cessed in parallel at the various nodes. On the
other hand, dynamic data such as shopping cart
content are frequently changed, and are usually
required by only one user. Replication is not
desirable because of the small chance of parallel
execution of queries about the same data, and
because overhead is incurred to keep the repli-
cated data consistent. Shopping cart content is
therefore a good candidate for partitioning.

We have developed a heuristic solution to the
problem of distributing data optimally across
database nodes. For convenience, we will describe
our heuristic using a relational database system.
The first step of our heuristic is to assign each indi-
vidual table in the database to one of two sets: Sr
for replication or Sp for partitioning [10]. This
assignment is based on the frequency at which
updates to the tables are made. Such information
can be obtained by examining the executed SQL
statements. Tables with update frequency above (or
below) a given threshold are placed in Sp (or Sr).

Tables belonging to Sr are replicated to two or
more database nodes. For tables in Sp, our strate-
gy is to provide better performance for the more
frequently invoked queries. When processing a
query, access to two tables may be required, say,
in a join operation. To reduce the amount of traf-
fic between database nodes (and thereby reduce
the mean query execution time), rows that are
frequently used in the same operation should be
located at the same node. In our heuristic, statis-
tics on such frequencies are collected. The tables
in Sp are then partitioned and stored such that
internode communication is minimized.

Our data distribution strategy has been tested
with IBM DB2 Universal Database Extended
Enterprise Edition.3 Our implementation, togeth-
er with measurement results, has confirmed the
feasibility of our heuristic method [10].

CONCLUDING REMARKS
We have reviewed various system issues in
improving the performance and scalability of
Web-based electronic commerce systems. Our
review has included new research results in load
balancing algorithms for a server cluster, the
design of a multiple cluster architecture, the
staleness/resource consumption trade-off in
maintaining consistency among database copies,
and the use of a parallel database system for
capacity enhancement. These results are highly
relevant to the understanding of performance
and scalability of electronic commerce systems.

S
e u n

u n

u n
= + −− / /

/
,

1

� Figure 5. Staleness/resource consumption trade-off.

n/u

S

R/u

10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
86420

3 IBM, DB2, DB2 Univer-
sal Database and Web-
Sphere are trademarks of
International Business
Machines Corporation in
the United States, other
countries or both. Other
company, product and
service names may be
trademarks or service
marks of others.

IEEE Communications Magazine • July 2003 115

The techniques mentioned in this article are
based on exploiting the parallelism provided by mul-
tiple or parallel servers. Further work is required on
how parallel or distributed database systems can be
used to improve capacity and performance, such as,
extension of the data distribution strategy to provide
dynamic data reorganization, and caching the results
of database queries.

Another aspect of electronic commerce appli-
cations that requires further investigation is how
dynamic Web pages may be efficiently managed.
These pages are often generated because dynam-
ic data stored in the database are used in their
construction. Caching of dynamic Web pages
necessitates tracking the dependencies between
the data stored in the database and the copies in
the cache. There is a need to understand how
data dependencies may be tracked without
impeding system scalability.

For dynamic data, a change in the database
content may result in the corresponding depen-
dent pages becoming stale. Further research is
required to understand staleness of data in this
context. Moreover, the current trend in provid-
ing service to users is toward personalization and
choice. This would make more Web pages
dependent on users’ personal preferences, and
pose challenges to data management and perfor-
mance improvement techniques such as caching.

ACKNOWLEDGMENTS
The research reported in this article is part of a
CITR major project, Enabling Technology for
Electronic Commerce Applications. Researchers
from the University of Waterloo, University of
Ottawa, University of Western Ontario, Univer-
sité du Québec à Montréal, Université de Mon-
tréal, and Concordia University participated in
this major project. The topics of research includ-
ed performance and scalability, multimedia cata-
logs, virtual malls, user interface design, and
quality of service management. The industrial
partners in the major project were IBM, Mitel
Corporation, and Bell Canada.

This research was supported in part by a grant
from the Canadian Institute for Telecommunica-
tions Research under the NCE program of the Gov-
ernment of Canada and in part by the IBM Centre
for Advanced Studies and an IBM Faculty Partner-
ship Award. This article represents the views of the
authors and not necessarily those of IBM.

REFERENCES
[1] B. C. Neuman, “Scale in Distributed Systems,” Readings

in Distributed Computing Systems, IEEE Comp. Soc.
Press, 1994.

[2] J. Wigglesworth, “Bringing Academic Research Directly
to Development: IBM Centres for Advanced Studies,”
Proc. IEEE Int’l. Eng. Management Conf., Cambridge,
UK, 2002, pp. 866–70.

[3] M. Abrams et al., “Caching Proxies: Limitations and
Potentials,” Proc. 4th Int’l. World Wide Web Conf.,
1995.

[4] I. Ahmad et al., “Evolutionary Algorithms for Allocating
Data in Distributed Database Systems,” Distrib. and
Parallel Databases, vol. 11, no. 1, Jan. 2002, pp. 5–32.

[5] M. Colajanni, P. S. Yu, and D. M. Dias, “Analysis of Task
Assignment Policies in Scalable Distributed Web-Server
Systems,” IEEE Trans. Parallel and Distrib. Sys., vol. 9,
no. 6, June 1998, pp. 585–600.

[6] M.-V. Salem, J. W. Wong, and G. V. Bochmann, “A
Scalable Load-Sharing Architecture for Distributed
Applications,” Proc. IEEE SoftCom 2001, pp. 156–64.

[7] M. K. Y. Au et al., “Method and Apparatus for a Dis-
tributed Web Commerce System,” U.S. patent app.
20020174034, Nov. 21, 2002.

[8] J. W. Wong, D. Evans, and M. K. Kwok, “On Staleness
and the Delivery of Web Pages,” Proc. CASCON 2001,
Toronto, Canada, Nov. 2001, pp. 156–64.

[9] A. Dingle and T. Partl, “Web Cache Coherence,” Proc.
5th Int’l. World Wide Web Conf., 1996.

[10] H. Ye et al., “Towards Database Scalability through
Efficient Data Distribution in E-commerce Environ-
ments,” Proc. 3rd Int’l. Symp. Elect. Commerce,
Research Triangle Park, NC, 2002.

BIOGRAPHIES
GREGOR V. BOCHMANN [F] (bochmann@site.uottawa.ca) is a
professor at the School of Information Technology and
Engineering at the University of Ottawa since January
1998, after 25 years at the University of Montreal. He is a
fellow of ACM and a member of the Royal Society of Cana-
da. He is known for his work on communication protocols
and software engineering. Ongoing projects include dis-
tributed network management and quality of service nego-
tiation for distributed multimedia applications.

JOHNNY W. WONG [SM] (jwwong@uwaterloo.ca) received his
Ph.D. degree in computer science from the University of
California at Los Angeles in 1975. Since that time, he has
been with the University of Waterloo where he is currently
a professor and director of the School of Computer Sci-
ence.

TERENCE C. LAU (lautc@ca.ibm.com) is a senior research staff
member at the Centre for Advanced Studies (CAS), IBM
Canada, and an adjunct professor of the Department of
Electrical and Computer Engineering, University of Water-
loo. Previously, he was a senior system architect and devel-
opment manager in various IBM product groups in
e-commerce, data communications, imaging, and applica-
tion development. He received a Ph.D. in computer science
from the University of Waterloo.

DON BOURNE (dbourne@ca.ibm.com) received his B.A.Sc.
from the University of Toronto in engineering science in
1994, and has worked at the IBM Toronto Laboratory since
1996. Significant areas of contribution include dynamic
web page caching and automatic page invalidation, scal-
able commerce systems, and problem determination/prob-
lem source identification. He is currently working as the
RAS architect for IBM’s WebSphere Application Server
group.

DAVID EVANS [StM] (dfevans@bbcr.uwaterloo.ca) received his
B.Sc. in computing and information science from the Uni-
versity of Guelph, followed by an M.Math from the School
of Computer Science at the University of Waterloo where he
is currently a Ph.D. candidate. His research interests include
self-organization, performance analysis, and multicast as
applied to IP-centric networks and applications.

BRIGITTE KERHERVÉ (kerherve.brigitte@uqam.ca) is an associ-
ate professor in the Department of Computer Science at
Université du Québec à Montréal, Canada. She received her
Ph.D. in computer science from the Université Paris VI,
France, in 1986. Her research interests include quality of
service management, metadata for multimedia databases,
adaptive video delivery, as well as advanced database sys-
tems to support distributed multimedia applications.

MOHAMED-VALL M. SALEM (salem@iro.umontreal.ca) is cur-
rently a postdoctoral researcher with the School of Infor-
mation Technology and Engineering at the University of
Ottawa. His research interests are in distributed systems,
computer networks, and software engineering, and encom-
pass scalability, content distribution, and performance
analysis. He received a Ph.D. in computer science from the
University of Montreal in 2002. During his Ph.D. studies he
held a research fellowship from the IBM Center for
Advanced Studies.

HAIWEI YE (ye@iro.umontreal.ca) is currently a Ph.D. candi-
date in the Department of Computer Science and Opera-
tional Research at the University of Montreal. Her research
interests are mainly in the areas of quality of service, dis-
tributed systems, network management, enabling technol-
ogy for e-commerce applications, and various aspects of
database technology, particularly distributed query process-
ing and optimization.

In our multiple

cluster architecture,

a data item at the

secondary cluster

becomes stale (or

outdated) when

the same data

item is updated at

the primary.

Staleness can be

eliminated if the

primary cluster

notifies the

secondary cluster

immediately upon

completion of

each update.

